Flipping Out with Many Flips: Hardness of Testing $k$-Monotonicity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flipping out with many flips: hardness of testing k-monotonicity

A function f : {0, 1} → {0, 1} is said to be k-monotone if it flips between 0 and 1 at most k times on every ascending chain. Such functions represent a natural generalization of (1-)monotone functions, and have been recently studied in circuit complexity, PAC learning, and cryptography. Our work is part of a renewed focus in understanding testability of properties characterized by freeness of ...

متن کامل

Testing k-Monotonicity

A Boolean k-monotone function defined over a finite poset domain D alternates between the values 0 and 1 at most k times on any ascending chain in D. Therefore, k-monotone functions are natural generalizations of the classical monotone functions, which are the 1-monotone functions. Motivated by the recent interest in k-monotone functions in the context of circuit complexity and learning theory,...

متن کامل

Testing k-Monotonicity (The Rise and Fall of Boolean Functions)

A Boolean k-monotone function defined over a finite poset domain D alternates between the values 0 and 1 at most k times on any ascending chain in D. Therefore, k-monotone functions are natural generalizations of the classical monotone functions, which are the 1-monotone functions. Motivated by the recent interest in k-monotone functions in the context of circuit complexity and learning theory,...

متن کامل

Flipping Tiles: Concentration Independent Coin Flips in Tile Self-Assembly

In this paper we introduce the robust coin flip problem in which one must design an abstract tile assembly system (aTAM system) whose terminal assemblies can be partitioned such that the final assembly lies within either partition with exactly probability 1/2, regardless of what relative concentration assignment is given to the tile types of the system. We show that robust coin flipping is poss...

متن کامل

Sort It Out with Monotonicity - Translating between Many-Sorted and Unsorted First-Order Logic

We present a novel analysis for sorted logic, which determines if a given sort is monotone. The domain of a monotone sort can always be extended with an extra element. We use this analysis to significantly improve well-known translations between unsorted and many-sorted logic, making use of the fact that it is cheaper to translate monotone sorts than non-monotone sorts. Many interesting problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2019

ISSN: 0895-4801,1095-7146

DOI: 10.1137/18m1217978